
 
 

110 | P a g e  
 

CONTROLLING HYPERVISOR FOR LIVE MIGRATION 

IN BARE-METAL CLOUDS 

S MD Rizwan
1
, Dr. K. Madhavi

2 

PG Scholar
1
, CSE Dept

1
, JNTUACEA

1
, Anantapuramu

1
, A.P, India

1 

Associate Professor
2
, CSE Dept

 2
, JNTUACEA

 2
, Anantapuramu

 2
, A.P, India

 2 

 

ABSTRACT  

The popularity of cloud computing has led to an increase in usage of bare-metal clouds. Bare-metal clouds are 

attractive for clients who require ensured execution since they can maintain a strategic distance from virtualization 

overhead and get the most  extreme physical hardware execution. Live movement grants a running working 

framework to be moved from one physical machine to another with insignificant downtime. In the existing system, 

BLMVisor is a live relocation scheme exploits a lean hypervisor to permit pass-through access to physical gadgets 

from the guest-Operating System (OS). To perform a live movement, the hypervisor captures and remakes physical 

gadget states, counting both unreadable and unwritable states. BLMVisor achieved performance in low memory-

intensive applications only. In the proposed system, an advanced hypervisor is being introduced which dynamically 

starts and stops the hypervisor to reduce the overhead of memory-intensive workloads. In the event that 

virtualization is turned off, there’s no occasion to begin hypervisor. So, it can be taken care of by introducing an 

agent program in the guest-OS. This will offer assistance to diminish the overhead whereas moving huge memory 

records from one physical machine to another in live movement which isn’t being backed in bare-metal clouds. 

 

Keywords: Bare-metal cloud, BLMVisor,hypervisor,live migration physical machine. 

 

1. INTRODUCTION 

Live relocation is generally utilized in Infrastructure greater. The executive's adaptability by permitting cloud sellers 

to move a running application to a different physical machine with insignificant personal time. For occurrence, 

cloud dealers halt physical machines to perform schedule upkeep, e.g., to supplant bombed gadgets and overhaul the 

firmware. Live movement permits cloud sellers to perform such support without interfering with administrations. 

Like routine upkeep, to envision equipment shortcomings, proactive adaptation to non-critical failure screens 

different pointers, for example, temperature and cooling fan states, and manages blames proactively by supplanting 

gadgets that are going to fall flat. Jiang et al. exhibited that utilizing live movement for dynamic substitution of 



 
 

111 | P a g e  
 

examples advances server farm effectiveness. Notwithstanding burden adjusting, the live movement gives 

advantageous capacities to IaaS mists. Progressively, cloud clients with substantial outstanding tasks at hand require 

top of the line gadgets, for example, InfiniBand organizes gadgets and strong state drives (SSD). As of late, the 

exhibition of capacity gadgets (e.g., 3D Xpoint SSDs and NVM Express) and organize gadgets (10 GbE and 40 

GbE) has improved essentially. Also, a few gadgets offer rich capacities, for example, numerous lines and Single 

Root I/O Virtualization (SR-IOV). In any case, the benefits of these top of the line gadgets are constrained by basic 

programming stacks, for example, record frameworks and TCP/IP stacks. To evacuate these confinements, client 

mode drivers, new OS structures, and ideal applications for current gadgets have been proposed. Shockingly, 

normally, such methodologies can't be abused in virtualized conditions. For instance, gadget virtualization covers 

local gadget capacities from the visitor OS, and interfere with virtualization keeps the visitor OS from utilizing 

physical intrude on controllers. In this manner, abusing such methods in conventional IaaS mists is troublesome. To 

fulfill the overwhelming remaining task at hand prerequisites, uncovered metal mists have risen as another sort of 

IaaS cloud. With exposed metal mists, sellers rent physical as opposed to virtual machines (VM). Exposed metal 

mists are alluring for clients who require ensured execution since they can stay away from virtualization overhead 

and get the greatest physical equipment execution. Along these lines, exposed metal mists are reasonable for AI, 

huge information, and superior figuring, where virtualization overhead isn't immaterial. 

 

2. LITERATURE SURVEY 

A. Polze, P. Troger, and F. Salfner et al. [4], Cutting edge processor and memory advancements will give 

enormously expanding registering and memory capacities with regards to application scaling. Nonetheless, this 

includes some significant downfalls: By developing many transistors and contracting basic sizes, generally speaking, 

framework dependability of future server frameworks is going to endure essentially. This makes receptive 

adaptation to internal failure conspires less fitting for administrative applications beneath immovable quality and 

practicality imperatives. We propose a building diagram for overseeing server framework constancy in an ace 

dynamic manner, so as to remain administration extents guarantees for reaction times and accessibility indeed with 

expanding equipment disappointment outlays. They present an idea, that expectant virtual device relocation that 

dynamically moves calculation far from defective or doubtful devices. The movement choice depends on wellbeing 

markers at different framework volumes that are consolidated into a worldwide integrity dependability measure. In 

view of this degree, live relocation procedures can be activated so as to move calculation to sound machines even 

before a disappointment cuts the framework down.  

In the event that no move is made, the steadfastness of upcoming multi-center and many-center host frameworks 

with enormous recollections will endure fundamentally because of their hugely expanded framework multifaceted 

nature. Accomplishing improved framework constancy by powerful asset use is one coming about a pattern in 



 
 

112 | P a g e  
 

virtualized server farms and server conditions. We introduced our building plan and introductory research results 

about genius dynamic virtualized asset the executives. It depends on the forecast of disappointments at different 

machine levels and the blend of these pointers into a worldwide wellbeing marker. A few existing exploration 

results about non-meddlesome working framework checking, disappointment expectation at equipment and 

application-level just as meta-learning demonstrate the attainability of the displayed idea. While live relocation, 

checking and (single-level) disappointment forecast is developed pieces of our general idea, the right blend of the 

various markers and associate with current movement requests comprehensive further investigate later on. In an 

event that the forecast methodology can give enough lead time to the disappointment shirking instrument, (for 

example, virtual machine relocation), the general genius dynamic adaptation to non-critical failure approach has 

great opportunities to go about as enhancement to the receptive adaptation to internal failure conspires being used 

today. 

 

C. Engelmann, G. R. Vallee et al. [5], Proactive adaptation to internal failure (FT) in elite figuring is an idea that 

averts process hub disappointments from affecting ongoing parallel programs by preemptively moving application 

parts in hubs that are moving into a fizzle. An establishment of proactive FT by characterizing its engineering and 

ordering execution alternatives. It relates earlier work to the displayed design order and talks about difficulties 

forwards for required supporting advances.  

We gave an establishment to proactive FT in HPC by characterizing its engineering and arranging execution 

choices. The displayed engineering depends on a criticism circle control component, where framework and 

application wellbeing is checked and safeguard move is made to maintain a strategic distance from up and coming 

application disappointment by reallocating running application parts from undesirable to sound process hubs. The 

criticism circle is framed by consistent application wellbeing checking, reallocation of utilization parts within the 

sight of strings, and impression of use allotment in application wellbeing. We distinguished four unmistakable sorts 

of proactive FT utilizing preemptive movement dependent on the observing capacities on the figure hubs and the 

handling of checking information inside the circle criticism. We further related earlier work to the exhibited design 

and arrangement. In particular, we depicted a choice of framework observing arrangements, framework log and 

dependability investigations, straightforward relocation systems, proactive/responsive FT exchange off 

representations, and primer dynamic FT structures. We likewise quickly examined the difficulties frontwards for a 

dynamic FT in HPC. Our arranged innovative work endeavors principally center around the talked about difficulties, 

explicitly on institutionalized measurements/interfaces and on versatile information conglomeration and preparing. 

Furthermore, our progressing work additionally takes a gander at disappointment infusion instruments. 

 

 



 
 

113 | P a g e  
 

3. EXISTING SYSTEM 

Past investigations have demonstrated that live relocation can be performed within the operating framework layer. In 

any case, in exposed metal mists, live relocation plans ought to be autonomous of the working framework for the 

accompanying causes. To begin with, cloud clients ought to be considered independently from cloud administrators. 

In the event that a live movement plan relies upon a working system, the live relocation activities are executed by 

the client. Be that as it may, it is unreasonable to anticipate that clients should foresee flighty support and executes 

live relocation as necessitate. Another scope of the bolstered working system ought to be expanded. In the event that 

a live relocation plan is OS-subordinate, cloud clients can't openly choose an OS. Moreover, regardless of whether a 

live movement plan supports major OSs, introducing and keeping up the extra programming for live relocation is an 

overwhelming undertaking. Besides, clients may alter OSs to advance the presentation for a top of the line gadgets. 

Such alterings may strife with a movement conspire that solitary examine major working frameworks.  

In later usage has displayed BLMVisor, a live relocation plot for uncovered metal mists. BLMVisor uses a 

flimsy hypervisor and it enables access to physical gadgets from the visitor working framework. To implement a 

live movement, the virtualization catches and recreates physical gadget conditions, counting both incoherent and 

Unwritable states. Confused conditions are caught in a roundabout way by observing gets to gadget scheduling and 

the practices of the given device. Unwritable conditions are remade by implication via cautiously managing the 

gadget. A model usage dependent upon Bit Visor supports live relocation of programmable interrupt controllers, 

programmable interval timers, etc., notwithstanding the memory and central processing unit. The execution was 

assessed in a progression of trials that affirmed BLMVisor accomplishes execution that is practically identical to 

that of an exposed metal device.  

 

4. PROPOSED SYSTEM  

This paper proposes an agent which is called dynamic BLMVisor, a live movement plot for bare-metal clouds. 

BLMVisor employments a slim hypervisor that straightforwardly opens physical equipment to the visitor OS as 

opposed to virtualizing equipment gadgets. The visitor OS totally overseeing physical equipment with a very thin 

virtualization overhead, along these lines augmenting equipment execution. throughout live relocation, the 

hypervisor cautiously screens and manages visitor OS accessed to physical gadgets dependent on gadget particulars 

and catches, moves, and reproduces the physical gadget conditions from the source to the goal devices. though the 

live movement had finished, the hypervisor doesn’t mediate on access to gadgets from the visitor application, along 

these lines killing virtualization overhead however much as could be expected. 

 

 A very thin hypervisor is used. 

 It totally controls the physical equipment with small virtualization overhead. 



 
 

114 | P a g e  
 

 Boosts equipment performance. 

 The hypervisor does not mediate on access to machines from the visitor OS, subsequently dispensing 

virtualization overhead as much as conceivable. 

 Memory workload is decreased by dynamically maintain hypervisor. 

 

4.1. PROCESS MODEL USED 

 

 

 

 

 

 

 

Fig 1: SDLC Umbrella Model 

4.1.1. SDLC (Umbrella Model) 

SDLC is nothing but Software Development Life Cycle. It could be a standard which is utilized by the computer 

industry to create great computer application. 

There are six stages in the SDLC model Requirement Gathering, Analysis, Designing, Coding, Testing, and 

Maintainance.this stages are used to build the application with great results. 

4.2  IMPLEMENTATION DETAILS 

This application is implemented using the Java platform. It provides a user interface with user registration, 

login, uploads files and at last download the files. 

 

Fig 2: New User and login interface. 

 



 
 

115 | P a g e  
 

In fig 2, it represents that the user needs to register their account and then logged in through user id and 

password. 

 

 

Fig 3: Uploading and Downloading 

As shown in fig 3, after the user logged in then above window will pop up. User has the options to upload files and 

download the files. 

 

Fig 4: Machine 1 

 

In fig 4, it illustrates that Machine1 is started and cloud services are activated to perform user actions. In figure 3 

User had uploaded data that are stored in Machine1 and then downloaded a file. 

 

 

 



 
 

116 | P a g e  
 

 

 

 

 

 

 

 

Fig 5: Machine 2 

 

In fig 5, it shows that Machine2 is started and cloud services are also beginning to provide services. 

 

 

 

 

 

 

 

.  

 

Fig 6: BLMVisor Monitoring 

 

In fig 6, it displays that BLMVisor has started and Migration is performed between Machine1 to Machine2. 

 

Fig 7: No Migration 



 
 

117 | P a g e  
 

 

In fig 7, it represents that when BLMVisor is started then Migration of files will be processed and when 

BLMVisor is stopped then Migration cannot be done. 

 In fig 6, BLMVisor is activated so Migration had processed form Machine1 and Machine2. 

 In fig 7, BLMVisor is not activated, so virtualization is not present to move files from Machine1 to 

Machine2. 

 A hypervisor is handled dynamically to overcome the memory workload. 

                                                             

 

Fig 8: Graph without Starting BLMVisor 

In fig 8, the graph represents that BLMVisor is not started and how much memory is using at what runtime will be 

displayed in the graph. 

It shows that memory usage is at 13,780 of memory workload with runtime id is 4,118 when BLMVisor is not 

started. This is less memory usage. 

 

 

Fig 9: Graph with Starting BLMVisor 



 
 

118 | P a g e  
 

In fig  9, the dynamic chart illustrates that BLMVisor is activated or started then it means hypervisor is started 

because to process the live migration from source to destination. It states that memory usage is at 57,000 of memory 

workload with runtime id is 4,218. When BLMVisor is started. This is the highest result. 

  5. EXPERIMENTAL RESULTS 

 Experiments are made to observe the dynamic chart variations form Microsoft Windows XP and Microsoft 

Windows 7 Ultimate. In both Operating Systems, Java is supported and installed the proposed application and 

checked the dynamic graph. 

 

 

Fig 10: Graph in Windows XP 

In fig 10, the dynamic graph, it is checked in Microsoft Windows XP. Memory usage in XP is low at 2,098 and 

runtime id is 8. 

 

Fig 11: Graph in Windows XP 



 
 

119 | P a g e  
 

In fig 11, the dynamic graph, it is checked in Microsoft Windows XP. Memory Usage is high at 10,000 and 

runtime is 178. 

 

Fig 12: Graph in Windows 7 

In fig 12, the dynamic graph states that it is tested in Microsoft Windows 7 Ultimate. The memory usage is 10,790 at 

runtime id is 262. 

 

Fig 13: Graph in Windows 7 

In fig 13, the dynamic graph states that it is tested in Microsoft Windows 7 Ultimate. The memory usage is 52,000 at 

runtime id is 346. 

8. CONCLUSION 

This paper has exhibited a dynamic BLMVisor, to reduce memory-intensive workloads. Bare-Metal Clouds supports 

Live migration process through the hypervisor and it is located in BLMVisor.When cloud vendor needs a live 

migration process, on that required time hypervisor is used to transfer the data from source to destination. So admin 

needs to start the BLMVisor when the virtualization is needed. Cloud vendor should use the BLMVisor when a 

vendor wants live migration, then BLMVisor should in on/start state. To execute a live movement process, the 



 
 

120 | P a g e  
 

hypervisor records and rebuilds physical gadgets conditions. Cloud Provider has to maintain the process of starting 

and stopping a BLMVisor. The performance was analyzed in a series of various Operating Systems that confirmed 

that inactive state of dynamic BLMVisor is handling the hypervisor to gain the less overhead of memory-intensive 

workloads. 

REFERENCES 

[1] Takaaki Fukai, Takahiro Shinagawa and Kazuhiko Kato, ―Live Migration in Bare-metal Clouds,‖ in IEEE 

Transactions on Cloud Computing, 2018. 

[2] C. Clark, S. Hand,  K. Fraser, J. G. Hansen, E. Jul, I. Pratt, C. Limpach,  and A. Warfield, ―Live Migration of 

Virtual Machines,‖ in Proceedings of the 2nd Symposium on Networked Systems Design and Implementation 

(NSDI 2005), May 2005, pp. 273–286.  

[3] A. B. Nagarajan, C. Engelmann, F. Mueller,  and S. L. Scott, ―Proactive Fault Tolerance for HPC with Xen 

Virtualization,‖ in Proceedings of the 21st Annual International Conference on Supercomputing, Jun. 2007, pp. 

23–32. 

[4] A. Polze, P. Troger, and F. Salfner, ―Timely Virtual Machine Migration for Pro-active Fault Tolerance,‖ in 

Proceedings of the 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time 

Distributed Computing Workshops (ISORCW), Mar. 2011, pp. 234–243.  

[5] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, ―Proactive Fault Tolerance Using Preemptive 

Migration,‖ in Proceedings of the 2009 17th Euromicro International Conference on Parallel, Distributed and 

Network-based Processing, Feb. 2009, pp. 252–257.   

[6] ―3D XPointTM: A Breakthrough in Non-Volatile Memory Technology.‖ [Online]. Available: http://www. 

intel.com/content/www/us/en/architecture-and-technology/ intel-micron-3d-xpoint-webcast.html  

[6] Y. Omote, T. Shinagawa, and K. Kato, ―Improving Agility and Elasticity in Bare-metal Cloud,‖ in Proceedings 

of the 20th International Conference on Architectural Support for Programming Languages and Operating 

Systems (ASPLOS 2015), 2015, pp. 145–159. 

[7] ―Bare Metal Cloud Services — Oracle Cloud.‖ [Online]. Available: https://cloud.oracle.com/en US/bare-metal  

[8] M. Nelson, B.-H. Lim, and G. Hutchins, ―Fast Transparent Migration for Virtual Machines,‖ in Proceedings of 

the USENIX Annual Technical Conference, 2005, pp. 25–25. 


